In Situ Autonomous Biomechanical Characterization

نویسندگان

  • Mehdi Boukallel
  • Maxime Girot
  • Stéphane Régnier
چکیده

This paper presents a fully automated microrobotic system based on force/vision referenced control designed for cell mechanical characterization. The design of the prototype combines Scanning Probe Microscopy (SPM) techniques with advanced robotics approaches. As a result, accurate and non-destructive mechanical characterization based on soft contact mechanisms are achieved. The in vitro working conditions are supported by the experimental setup so that mechanical characterizations can be performed in biological environmental requirements as well as in cyclical operating mode during several hours. The design of the different modules which compose the experimental setup are detailed. Mechanical cell characterization experiments under in vitro conditions on human adherent cervix Epithelial Hela cells are presented to demonstrate the viability and effectiveness of the proposed setup.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Characterization of Thermoresponsive In-situ Forming Poloxamer Hydrogel for Controlled Release of Nile red-loaded Solid Lipid Nanoparticles

Preparation and characterization of thermoresponsive in-situ forming poloxamer hydrogel for controlled release of Nile red-loaded solid lipid nanoparticles. Nanoparticles (NPs) are cleared rapidly from systemic circulation and do not provide sustained action in most cases. To solve this problem, this investigation introduces an erodible in-situ forming gel system as potential vehicles for prolo...

متن کامل

In-situ synthesis and characterization of conducting metal — polyaniline nanocomposites

Metal—Polyaniline nanocomposites such as Platinum-Polyaniline nanocomposite is prepared by insitu oxidative polymerization of aniline and reduction of Pt+4 ions into Pt nanoparticles. Thepolymerization of aniline was carried out in the presence of 1(2PtCN6 [Potassium Hexa CyanoPlatinate (IV)] as oxidizing agent. During the reaction aniline monomers undergo oxidation andform polyaniline (PANT) w...

متن کامل

Preparation and characterization of bear bile-loaded pH sensitive in-situ gel eye drops for ocular drug delivery

Objective(s): In this study, a stable bear bile-loaded pH sensitive in-situ eye drop gel was prepared for sustain delivery and enhanced therapeutic application. Materials and Methods: Bear bile-loaded in-situ ocular gels with different Carbopol/Hydroxypropyl methylcellulose (HPMC)  ratios were prepared and their stability was tested in P...

متن کامل

Synthesis, Characterization and Transport Properties of Novel Ion-exchange Nanocomposite Membrane Containing In-situ Formed ZnO Nanoparticles

A  new  type  of  cation-exchange  nanocomposite  membranes  was prepared  by  in-situ  formation  of  ZnO  nanoparticles  in  a  blend containing  sulfonated  poly  (2,6-dimethyl-1,4-phenylene  oxide)  and sulfonated polyvinylchloride  via  a  simple  one-step  chemical method.  As-synthesized  nanocomposite  membranes were characterized  using  Fourier  transform  infrared  spectroscopy, scan...

متن کامل

Exploring the potential of complex-vesicle based niosomal ocular system loaded with azithromycin: Development of in situ gel and ex vivo characterization

Abstract Bacterial conjunctivitis characterized as pink eye referred as an inflammation of an eye caused by the enlargement of blood vessels present in conjunctiva, resulting in a red or bloodshot appearance of the eyes. Topical ocular delivery is found to be useful in treating conjunctivitis, but to maintain an effective drug concentration at a site of action in order to achieve desired pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006